
1

Unit-5

CODING AND UNIT TESTING

Programming Principles and Guidelines

The main task before a programmer is to write quality code with few bugs in it. The

additional constraint is to write code quickly. Writing source code is a skill that can only be

acquired by practice. However, based on experience, some general rules and guidelines can

be given for the programmer. Good programming (producing correct and simple programs) is

a practice independent of the target programming language, although well-structured

programming languages make the programmer's job simpler.

1.Common Coding Errors

Software errors (we will use the terms errors, defects and bugs inter changeably in our

discussion here; precise definitions are given in the next chapter)are a reality that all

programmers have to deal with. Much of effort in developing software goes in identifying

and removing bugs. There are various practices that can reduce the occurrence of bugs, but

regardless of the tools or methods we use, bugs are going to occur in programs. Though

errors can occur in a wide variety of ways, some types of errors are found more commonly.

Here we give a list of some of the commonly occurring bugs.

Memory Leaks

A memory leak is a situation where the memory is allocated to the program which is not

freed subsequently. This error is a common source of software failures which occurs

frequently in the languages which do not have automatic garbage collection (like C, C++).

They have little impact in short programs but can have catastrophic effect on long running

systems.

Freeing an Already Freed Resource

In general, in programs, resources are first allocated and then freed. For example, memory is

first allocated and then de allocated. This error occurs when the programmer tries to free the

already freed resource. The impact of this common error can be catastrophic.

NULL Dereferencing

2

This error occurs when we try to access the contents of a location that points to NULL. This

is a commonly occurring error which can bring a software system down. It is also difficult to

detect as it the NULL dereferencing may occur only in some paths and only under certain

situations. Often improper initialization in the different paths leads to the NULL reference

statement.

Lack of Unique Addresses

Aliasing creates many problems, and among them is violation of unique addresses when we

expect different addresses. For example in the string concatenation function, we expect

source and destination addresses to be different.

Synchronization Errors

In a parallel program, where there are multiple threads possibly accessing some common

resources, then synchronization errors are possible [43, 55].These errors are very difficult to

find as they don't manifest easily. But when they do manifest, they can cause serious damage

to the system. There are different categories of synchronization errors, some of which are:

1. Deadlocks

2. Race conditions

3. Inconsistent synchronization

Array Index Out of Bounds

Array index often goes out of bounds, leading to exceptions. Care needs to be taken to see

that the array index values are not negative and do not exceed their bounds.

Arithmetic exceptions

These include errors like divide by zero and floating point exceptions. There sult of these

may vary from getting unexpected results to termination of the program.

Off by One

This is one of the most common errors which can be caused in many ways. For example,

starting at 1 when we should start at 0 or vice versa, writing<— N instead of < N or vice

versa, and so on.

Enumerated data types

3

Overflow and underflow errors can easily occur when working with enumerated types, and

care should be taken when assuming the values of enumerated data types.

Illegal use of &; instead of &;&:

This bug arises if non short circuit logic (like & or |) is used instead of short circuit logic (&&

or ||). Non short circuit logic will evaluate both sides of the expression. But short circuit

operator evaluates one side and based on the result, it decides if it has to evaluate the other

side or not.

String handling errors

There are a number of ways in which string handling functions like strcpy, sprintf, gets etc

can fail. Examples are one of the operands is NULL, the string is not NULL terminated, or

the source operand may have greater size than the destination. String handling errors are quite

common.

Buffer overflow

Though buffer overflow is also a frequent cause of software failures, in todays world its main

impact is that it is a security flaw that can be exploited by a malicious user for executing

arbitrary code. When a program takes an input which is being copied in a buffer, by giving a

large (and malicious) input, a malicious user can overflow the buffer on the stack. By doing

this, the return address can get rewritten to what ever the malicious user has planned. So,

when the function call ends, the control goes to where the malicious user has planned, which

is typically some malicious code to take control of the computer or do some harmful actions.

2.Structured Programming

 primarily against indiscriminate use of control

constructs like gotos

 so it is easier to argue about programs

. A program has a static structure which is the

ordering of statements in the code – and this is a linear ordering

–order in which statements are executed

 ordering of statements

 dynamic structure

4

 dynamic behavior is as expected

 program, i.e. the static structure

 static code

ome easier if the dynamic and static structures are similar

 understand dynamic behavior from static

structure

 write programs whose dynamic structure is same as

static

statements are executed in the same order in which they are present in code

statements organized linearly, the objective is to develop programs whose control flow

is linear

Meaningful programs cannot be written asset of simple statements

 constructs are to be used

-entry-single-exit constructs

statements can be in the order they appear in code

nd static order becomes same

 programs

 shown for a program S is of the form P {S} Q

– precondition that holds before S executes

– post condition that holds after S has executed and terminated

The most commonly used single-entry and single-exit statements are:

Selection: if B then SI else S2

if B then SI

Iteration: While B do S

5

repeat S until B

Sequencing: SI; S2; S3;...

3.Information Hiding

 always contain data structures that hold information

 functions they want

 performed on the information, i.e. the data is

manipulated in a few ways only

ledger, only debit, credit, check cur balance etc are done Information

hiding – the information should be hidden; only operations on it should be exposed

 access functions, which can be used by programs

ding reduces coupling

 components, and is also widely used today

4.Some Programming Practices

The concepts discussed above can help in writing simple and clear code with few bugs. There

are many programming practices that can also help towards that objective. We discuss here a

few rules that have been found to make code easier to read as well as avoid some of the

errors. Some of these practices are from.

Control Constructs: As discussed earlier, it is desirable that as much as possible single-

entry, single-exit constructs be used. It is also desirable to use a few standard control

constructs rather than using a wide variety of constructs, just because they are available in the

language.

Gotos: Gotos should be used sparingly and in a disciplined manner. Only when the

alternative to using gotos is more complex should the gotos be used. In any case, alternatives

must be thought of before finally using a goto. If a goto must be used, forward transfers (or a

jump to a later statement) is more acceptable than a backward jump.

Information Hiding: As discussed earlier, information hiding should be supported where

possible. Only the access functions for the data structures should be made visible while

hiding the data structure behind these functions.

6

User-Defined Types: Modern languages allow users to define types like the enumerated

type. When such facilities are available, they should be exploited where applicable. For

example, when working with dates, a type can be defined for the day of the week. Using such

a type makes the program much clearer than defining codes for each day and then working

with codes.

Nesting: If nesting of if-then-else constructs becomes too deep, then the logic become harder

to understand. In case of deeply nested if-then-elses, it is often difficult to determine the if

statement to which a particular else clause is associated. Where possible, deep nesting should

be avoided, even If it means a little inefficiency. For example, consider the following

construct of nested if-then-elses:

if CI then SI

else if C2 then S2

else if C3 then S3

else if C4 then S4;

If the different conditions are disjoint (as they often are), this structure can be converted into

the following structure:

if CI then SI

if C2 then S2

if C3 then S3

if C4 then S4

Module Size: We discussed this issue during system design. A programmer should carefully

examine any function with too many statements(say more than 100). Large modules often

will not be functionally cohesive. There can be no hard-and-fast rule about module sizes the

guiding principle should be cohesion and coupling.

Module Interface: A module with a complex interface should be carefully examined. As a

rule of thumb, any module whose interface has more than five parameters should be carefully

examined and broken into multiple modules with a simpler interface if possible.

Side Effects: When a module is invoked, it sometimes has side effects of modifying the

program state beyond the modification of parameters listed in the module interface definition,

7

for example, modifying global variables. Such side effects should be avoided where possible,

and if a module has side effects, they should be properly documented.

Robustness: A program is robust if it does something planned even for exceptional

conditions. A program might encounter exceptional conditions in such forms as incorrect

input, the incorrect value of some variable, and overflow. If such situations do arise, the

program should not just "crash" or" core dump"; it should produce some meaningful message

and exit gracefully.

Switch case with default: If there is no default case in a "switch" statement, the behavior can

be unpredictable if that case arises at some point of time which was not predictable at

development stage. Such a practice can result in a bug like NULL dereference, memory leak,

as well its other types of serious bugs. It is a good practice to always include a default case.

Give Importance to Exceptions: Most programmers tend to give less attention to the possible

exceptional cases and tend to work with the mainflow of events, control, and data. Though

the main work is done in the main path, it is the exceptional paths that often cause software

systems to fail. To make a software system more reliable, a programmer should consider all

possibilities and write suitable exception handlers to prevent failures or loss when such

situations occur.

5.Coding Standards

Programmers spend far more time reading code than writing code. Over the life of the code,

the author spends a considerable time reading it during debugging and enhancement. People

other than the author also spend considerable effort in reading code because the code is often

maintained by someone other than the author. In short, it is of prime importance to write code

in a manner that it is easy to read and understand. Coding standards provide rules and

guidelines for some aspects of programming in order to make code easier to read. Most

organizations who develop software regularly develop their own standards.

Naming Conventions

Some of the standard naming conventions that are followed often are:

• Package names should be in lower case (e.g., mypackage, edu.iitk.maths)

• Type names should be nouns and should start with uppercase (e.g.,

8

Day, DateOfBirth, EventHandler)Variable names should be nouns starting with lower case

(e.g., name,

amount)Constant names should be all uppercase (e.g., PI, MAXJTERATIONS)

• Method names should be verbs starting with lowercase (e.g., getValue())

• Private class variables should have the _ suffix (e.g., "private int value_").(Some standards

will require this to be a prefix.)

• Variables with a large scope should have long names; variables with a small scope can have

short names; loop iterators should be named i, j ,k, etc.

Files

There are conventions on how files should be named, and what files should contain, such that

a reader can get some idea about what the file contains. Some examples of these conventions

are:

• Java source files should have the extension .Java—this is enforced by most compilers and

tools.

• Each file should contain one outer class and the class name should be same as the file name.

• Line length should be limited to less than 80 columns and special characters should be

avoided. If the line is longer, it should be continued and the continuation should be made very

clear.

Statements

These guidelines are for the declaration and executable statements in the source code. Some

examples are given below. Note, however, that not everyone will agree to these. That is why

organizations generally develop their own guidelines that can be followed without restricting

the flexibility of programmers for the type of work the organization does.

• Variables should be initialized where declared, and they should be declared in the smallest

possible scope.

• Declare related variables together in a common statement. Unrelated variables should not be

declared in the same statement.

• Class variables should never be declared public.

9

• Use only loop control statements in a for loop.

• Loop variables should be initialized immediately before the loop.

• Avoid the use of break and continue in a loop.

• Avoid the use of do ... while construct.

• Avoid complex conditional expressions—introduce temporary Boolean variables instead.

• Avoid executable statements in conditionals.

Commenting and Layout

Comments are textual statements that are meant for the program reader to aid the

understanding of code. The purpose of comments is not to explain in English the logic of the

program—if the logic is so complex that it requires comments to explain it, it is better to

rewrite and simplify the code instead.

In general, comments should explain what the code is doing or why the code is there, so that

the code can become almost standalone for understanding

the system. Comments should generally be provided for blocks of code, andin many cases,

only comments for the modules need to be provided.

Incrementally Developing Code

s are assigned to programmers for coding

-down development, top level modules are developed first; in bottom-up lower levels

modules

 processes; we discuss some here

An Incremental Coding Process

s: Write code for the module, unit test it, fix the bugs

–

write code for part of functionality, then test it and fix it, then proceed

 Incrementally

10

Test Driven Development

 of activities in coding

 test scripts and then writes the code to pass the test

cases in the script

 apart of the extreme programming (XP)

 the test

 gets tested by the test cases

 only test part of functionality

11

 is there is on test case design, not coding

 Focus shifts to how code will be used as test cases are

written first

 design

 test cases are not possible get left out

 needed to avoid getting a messy code

Pair Programming

 as key practice in XP

12

 than individuals

 structures, strategies, etc.

 other actively reviews what is being typed

 formulated

PP has continuous code review, and reviews are known to be effective

 conditions are likely to be dealt with better and not forgotten

 there

Managing Evolving Code:

During coding process, code written by a programmer evolves. Code by different

programmers have to be put together to form the system. Besides normal code changes,

requirement changes also cause change. Evolving code has to be managed

1) Source Code Control and Built:

Source code control is an essential step programmers have to do

Generally tools like CVS, VSS are used. A tool consists of repository, which is a controlled

directory structure. The repository is the official source for all the code files. System build is

done from the files in the repository only. Tool typically provides many commands to

programmers.

 Checkout a file: by this a programmer gets a local copy that can be modified.

 Check in a file: changed files are uploaded in the repository and change is then

available to all.

 Tools maintain complete change history and all older versions can be recovered.

13

 Source code control is an essential tool for developing large projects and for

coordination.

2) Refactoring:

Refactoring is a technique to improve existing code by improving its design (i.e. the internal

structure).In TDD, refactoring is a key step. Refactoring is done generally to recue coupling

or increase cohesion. Involves changing of code to improve some design property. No new

functionality is added. To mitigate risks associated with refactoring two golden rules.

Refactor in small steps. Have test scripts available to test that the functionality is preserved.

With refactoring code is continually improving; refactoring cost is paid by reduced main

effort later. There are various refactoring patterns that have been proposed.

 “Bad smells” that suggest that refactoring may be desired

 Duplicate code

 Long method

 Long class

 Long parameter list

 Switch statement

 Speculative generality

 Too much communication between objects, etc

What is Unit Testing?

Unit testing, is a testing technique using which individual modules are tested to determine if

there are any issues by the developer himself. It is concerned with functional correctness of

the standalone modules.

 The main aim is to isolate each unit of the system to identify, analyze and fix the

defects.

 A unit is the smallest testable part of any software. It usually has one or a few inputs

and usually a single output.

 In procedural programming, a unit may be an individual program, function,

procedure, etc.

14

 In object-oriented programming, the smallest unit is a method, which may belong to a

base/ super class, abstract class or derived/ child class. Unit testing frameworks,

drivers, stubs, and mock/ fake objects are used to assist in unit testing.

Unit Testing - Advantages:

 Reduces Defects in the newly developed features or reduces bugs when changing the

existing functionality.

 Reduces Cost of Testing as defects are captured in very early phase.

 Improves design and allows better refactoring of code.

 Unit Tests, when integrated with build gives the quality of the build as well.

15

Unit Testing Life Cycle:

Unit Testing Techniques:

 Black Box Testing - Using which the user interface, input and output are tested.

 White Box Testing - used to test each one of those functions behaviour is tested.

 Gray Box Testing - Used to execute tests, risks and assessment methods.

What is code Inspection?

Code Inspection is the most formal type of review, which is a kind of static testing to avoid

the defect multiplication at a later stage.

 The main purpose of code inspection is to find defects and it can also spot any

process improvement if any.

 First proposed by Fagan in 70s

 An inspection report lists the findings, which include metrics that can be used to aid

improvements to the process as well as correcting defects in the document under

review.

 Preparation before the meeting is essential, which includes reading of any source

documents to ensure consistency.

 Inspections are often led by a trained moderator, who is not the author of the code.

16

 The inspection process is the most formal type of review based on rules and

checklists and makes use of entry and exit criteria.

 It usually involves peer examination of the code and each one has a defined set of

roles.

 After the meeting, a formal follow-up process is used to ensure that corrective action

is completed in a timely manner.

 It is a structured process with defined roles for the participants. The focus is on

identifying problems, not resolving them. Review data is recorded and used for

monitoring the effectiveness.

Where Code Inspection fits in?

Advantages:

 It is very effective for finding the defects from the code.

Disadvantages:

 The code inspection process is time consuming.

 A larger number of people are involved in the code inspection process, it can be

turned out to be costly process.

17

 Due to these drawbacks of the code inspection, a single person may carry out the

code inspection and code reviews.

METRICS

A) Metrics for Size:

1)KLOC (Thousands (kilo) of lines of code) is a measure of the size of a computer program.

2) LOC are "artifact" of all software development project that can be easily counted.

3) LOC measures are programming language dependent. They penalize well-designed but

shorter programs. They cannot easily accommodate non-procedural languages.

4)When used in estimation, LOC requires may be difficult to determine; planner must

estimate the LOC long before analysis and design have been completed

5)Halstead’s Volume

 n1: no of distinct operators

 n2: no of distinct operands

 N1: total occurrences of operators

 N2: Total occurrences of operands

Vocabulary, n = n1 + n2

Length, N = N1 + N2

 Volume, V = N log2 (n)

B) Metrics for Complexity

1) Cyclomatic complexity is software metric, used to indicate the complexity of a program.

2) Represent the program by its control flow graph with e edges, n nodes, and p parts

Cyclomatic complexity is defined as V(G) = en+p

3)This is same as the number of linearly independent cycles in the graph And is same as the

number of decisions (conditionals) in the program plus one

TESTING

18

Detecting defects in Testing:

 During testing, software under test (SUT) executed with set of test cases .

Failure during testing => defects are present No failure => confidence grows, but cannot say

“defects are absent” To detect defects, must cause failures during testing.

TESTING CONCEPTS:

Error,Fault and Failure:

Fault : It is a condition that causes the software to fail to perform its required function.

Examples: – Software bug – Random hardware fault – Memory bit “stuck” – Omission or

commission fault in data transfer etc

 Error : Refers to difference between Actual Output and Expected output.

A fault may lead to an error, i.e., error is a mechanism by which the fault becomes apparent

 Example: – memory bit got stuck but CPU does not access this data – Software “bug” in a

subroutine is not “visible” while the subroutine is not called

Failure : It is the inability of a system or component to perform required function according

to its specification.

 One of the goals of safety-critical systems is that error should not result in system failure

Test case, Test suite and Test harness:

What is Test case?

A test case is a document, which has a set of test data, preconditions, expected results and

post conditions, developed for a particular test scenario in order to verify compliance against

a specific requirement.

Test Case acts as the starting point for the test execution, and after applying a set of input

values, the application has a definitive outcome and leaves the system at some end point or

also known as execution post condition.

What is a Test Suite?

19

Test suite is a container that has a set of tests which helps testers in executing and reporting

the test execution status. It can take any of the three states namely Active, Inprogress and

completed.

A Test case can be added to multiple test suites and test plans. After creating a test plan, test

suites are created which in turn can have any number of tests.

Test suites are created based on the cycle or based on the scope. It can contain any type of

tests, - functional or Non-Functional.

Test Suite - Diagram:

What is Harness?

Test Harness, also known as automated test framework mostly used by developers. A test

harness provides stubs and drivers, which will be used to replicate the missing items, which

are small programs that interact with the software under test.

Test Harness Features:

 To execute a set of tests within the framework or using the test harness

 Provide a flexibility and support for debugging

 To capture outputs generated by the software under test

 To record the test results(pass/fail) for each one of the tests

 Helps the developers to measure code coverage at code level.

Psychology of Testing:

20

Psychology of testing is a type of testing which fully depends on the mindset of developers

and tester. When we are building the software, we working positively towards the software

never think about negative things. The mindset should be different while testing and

reviewing developing software. With the correct mindset, the programmer can test their own

code. At a certain point independence tester often makes the tester more effective to finding

defects. That’s why independence tester highly recommendable. Because they are testing

specialists or professional testers.

Levels of Independence Tester in Psychology of testing

 Tests designed by the person who wrote the software under test

 Tests designed by another person

 Tests designed by a person from a different organizational group or test specialists

 Tests designed by a person from a different organization or company

 Levels of Testing: Levels Of Testing:

Unit/component testing

Unit testing aims to verify each part of the software by isolating it and then perform tests to

demonstrate that each individual component is correct in terms of fulfilling requirements and

the desired functionality.

21

This type of testing is performed at the earliest stages of the development process, and in

many cases it is executed by the developers themselves before handing the software over to

the testing team.

 The advantage of detecting any errors in the software early in the day is that by doing so the

team minimises software development risks, as well as time and money

Integration testing

Integration testing aims to test different parts of the system in combination in order to assess if they

work correctly together. By testing the units in groups, any faults in the way they interact together

can be identified.

Testers can adopt either a bottom-up or a top-down integration method.

In bottom-up integration testing, testing builds on the results of unit testing by testing higher-

level combination of units (called modules) in successively more complex scenarios.

 It is recommended that testers start with this approach first, before applying the top-down

approach which tests higher-level modules first and studies simpler ones later.

System testing

The next level of testing is system testing. As the name implies, all the components of the

software are tested as a whole in order to ensure that the overall product meets the

requirements specified.

System testing enables testers to ensure that the product meets business requirements, as well

as determine that it runs smoothly within its operating environment. This type of testing is

typically performed by a specialized testing team.

Acceptance testing

Finally, Acceptance Testing is the level in the software testing process where a product is

given the green light or not. The aim of this type of testing is to evaluate whether the system

complies with the end-user requirements and if it is ready for deployment.

By performing acceptance tests, the testing team can find out how the product will perform

when it is installed on the user’s system. There are also various legal and contractual reasons

why acceptance testing has to be carried out.

22

 Hierarchy: The four levels of tests shouldn’t only be seen as a hierarchy that extends from

simple to complex, but also as a sequence that spans the whole development process from the

early to the later stages. Note however that later does not imply that acceptance testing is

done only after say 6 months of development work. In a more agile approach, acceptance

testing can be carried out as often as every 2-3 weeks

Testing Process:

Testing is a process rather than a single activity. This process starts from test planning then

designing test cases, preparing for execution and evaluating status till the test closure. It is a

task intended to detect defects in software by contrasting a computer program's expected

results with its actual results for a given set of inputs.

Test Plan

Test planning, the most important activity to ensure that there is initially a list of tasks and

milestones in a baseline plan to track the progress of the project. It also defines the size of

the test effort.

It is the main document often called as master test plan or a project test plan and usually

developed during the early phase of the project.

Test Planning Activities:

 To determine the scope and the risks that need to be tested and that are NOT to be

tested.

 Documenting Test Strategy.

 Making sure that the testing activities have been included.

 Deciding Entry and Exit criteria.

 Evaluating the test estimate.

Test Case Design Techniques:

With the assistance of test case design techniques, one can effortlessly test various

components of the software, such as its internal structure, codes, design, test cases, and more.

Moreover, they enable software developers and testers to create and design test cases that

simplify the process of testing and help them execute test cases effortlessly. Therefore, if you

23

want to ensure the quality, effectiveness, reliability and consistency of your software

product, it is vital for you to choose the right test case design technique.

Things to Consider while Choosing Test Design Techniques:

 Risks & Objectives: The objective and purpose of each software testing process

differs from another, hence their requirements for test design technique also differs

from each other.

 Time & Budget: Without time & budget constraints, testers can easily experiment

with multiple techniques. However, these constraints force them to choose a

technique that enables them to get accurate outputs within a limited period of time.

Following are some design techniques:

 Boundary Value Analysis (BVA)

 Equivalence Partitioning (EP)

 Decision Table Testing

 State Transition Diagrams

 Use Case Testing

Test Case Execution:

Test execution is the process of executing the code and comparing the expected and actual

results.

Following factors are to be considered for a test execution process:

1) Based on a risk, select a subset of test suite to be executed for this cycle.

2) Assign the test cases in each test suite to testers for execution.

Executing test cases may require drivers or stubs to be written; some tests can be auto, others

manual. A separate test procedure document may be prepared. Test summary report is often

an output – gives a summary of test cases executed, effort, and defects found, etc

24

Monitoring of testing effort is important to ensure that sufficient time is spent Computer time

also is an indicator of how testing is proceeding

Black box testing:

Black-box testing is a method of software testing that examines the functionality of an

application without peering (looking) into its internal structures or workings. This method of

test can be applied virtually to every level of software testing: unit, integration, system

and acceptance. It is sometimes referred to as specification-based testing.

This method attempts to find errors in the following categories:

 Incorrect or missing functions

 Interface errors

 Errors in data structures or external database access

 Behavior or performance errors

 Initialization and termination errors

Advantages / Pros of Black Box Testing

 Unbiased tests because the designer and tester work independently

 Tester is free from any pressure of knowledge of specific programming languages

to test the reliability and functionality of an application / software

 Facilitates identification of contradictions and vagueness in functional

specifications

 Test is performed from a user’s point-of-view and not of the designer’s

 Test cases can be designed immediately after the completion of specifications

25

Disadvantages / Cons of Black Box Testing

 Tests can be redundant if already run by the software designer

 Test cases are extremely difficult to be designed without clear and concise

specifications

 Testing every possible input stream is not possible because it is time-consuming

and this would eventually leave many program paths untested

 Results might be overestimated at times

 Cannot be used for testing complex segments of code

Even though black box testing does not test a system comprehensively, still, it can help one

achieve a user’s expectation from an application / software.

White box testing:

WHITE BOX TESTING (also known as Clear Box Testing, Open Box Testing, Glass Box

Testing, Transparent Box Testing, Code-Based Testing or Structural Testing) is a software

testing method in which the internal structure/design/implementation of the item being tested

is known to the tester.

It is the testing based on an analysis of the internal structure of the component or system.

Advantages

 Testing can be commenced at an earlier stage. One need not wait for the GUI to be

available.

 Testing is more thorough, with the possibility of covering most paths.

Disadvantages

 Since tests can be very complex, highly skilled resources are required, with a

thorough knowledge of programming and implementation.

 Test script maintenance can be a burden if the implementation changes too frequently.

 Since this method of testing is closely tied to the application being tested, tools to

cater to every kind of implementation/platform may not be readily available.

Software Metric:

26

 Software metric is a standard of measure of a degree to which a software system or process

possesses some property. Even if a metric is not a measurement (metrics are functions, while

measurements are the numbers obtained by the application of metrics), often the two terms

are used as synonyms.

The goal is obtaining objective, reproducible and quantifiable measurements, which may

have numerous valuable applications in schedule and budget planning, cost estimation,

quality assurance, testing, software debugging, software performance optimization, and

optimal personnel task assignments.

Limitations

As software development is a complex process, with high variance on both methodologies

and objectives, it is difficult to define or measure software qualities and quantities and to

determine a valid and concurrent measurement metric, especially when making such a

prediction prior to the detail design. Another source of difficulty and debate is in determining

which metrics matter, and what they mean. The practical utility of software measurements

has therefore been limited to the following domains:

 Scheduling

 Software sizing

 Programming complexity

 Software development effort estimation

 Software quality

A specific measurement may target one or more of the above aspects, or the balance between

them, for example as an indicator of team motivation or project performance.

